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SUMMARY

PROBLEM

Review and extend the theory of computation cerror generation in digital filters.
Specitically consider tixed-point multiplication tor digitized Gaussian analog signal inputs.

RESULTS

Deterministic propertivs of rounding and chopping were examined for both mul-
tiplication and quantization crrors,

Statistical properties of rounding only were examined for both multiplication and
quantization crrors. Statistical propertios examined are 1) the error distribution density
td.doy, 2 the error variance, 3y the autocorrelation betwee y suceessive error values, and
4 the cross-eorrelation coctticient between the quantizer input and the resulting error.
Specttic results were obtained tor zero-mean Gaussian random processes.

For quantization errors, the above properties d pend only on the ratio of the
process standard deviation to the quantization interval size (g ). The mapping of the
quantizer input dud. onto the quantization error dud. is continuous. Consequently, tor
g4 10O the aror dud s almost exactly uniform between g 20 and the error virunee

S aa .
overy near = 120 Both the autocorrelation and the cross-corretation coctticients were
negligible, Furthermore, the equations show that the quantization crror approaches

arbitrarily clow to q: 12 a0 g increases, while the autocorrelation and cross-correlation
coctlicients approach aebitrarily close to zero.

For rounding crrors, the above properties depend not only on o 4. but on the
word sizes Noaad the vatue o the multiplier, J, as wello Furthermore, the diserete nature
of the computer word catses o discrete mapping ol the multiplive input d.d. onto the
multipueeaon error dad. Cousequently, Tor the Timited range of parameters considered.,
most vilues of Joaveld an crror dud. which is not unitorm in the continuous sense but

. v N . . >
shows o varamee approaching = 120 Similarly, most autocorrelation and cross-
corrchition values approach zero, but stabilize at some non-zero value as ¢, becomes

1




large. However, some values of J result in large, non-zero autocorrelation and

. . - . . - A .
cross-correlation values and a variance which diverges widely from =12,

RECOMMENDATIONS

1. Attempt to derive analytical formulas for evaluation of the crror varianee and
the cross-correlition between the multiplier input and the resulting crror.
2. Extend the technique of analysis to the problem of error gencration for

floating-point computers.
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INTRODUCTION

OBJECTIVE

We consider errors that occur when two fixed-point binary numbers are multiplicd
in a digital computer.  For example. suppese we multiply the following numbers together.
0.0101 and 1.10015*. Each number has a “word”™ length of N = 4 bits plus sign bit.

The result of multiplication is a number 2 X 4 = 8 bits plus sign bit, cqual to
1.00101101+ in this case. To store the result in the computer memory it is necessary to

*chop™ or “‘round” it by discarding tie 4 least signiticant bits. Chopping results when we
discard these bits, leaving the first 4 bits plus sign unchanged. Rounding is done by add-
ing a “one™ to the least significant of the first 4 bits when the most signitficant of the
lower 4 bits is equal to a “one™. Then the lower 4 bits are discarded. 11 the most sigaif-
icunt of the lower 4 bits is cqual to a “zero” nothing is added before the lower 4 bits are
discarded.  In the above example, chopping would leave the result 1.0010>: rounding

would feave the result 1.001 15, This example and another are shown in detail in table 1,

Note that chopping or round g results in a product that is inexact. The difference
between the chopped or rounded product and the original product is an crror. F S wath
this crror and its characteristics that we are coneeried.

Multiplication error must be considered in evaluating the performance ol digital
filters, A digital filter is an algorithm which is used in a digital computer to replace an
analog filter (reference 2). The algorithm is of the form

n n
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Table 1. Examples of Row, ling and Chopping.

EXAMPLE NO. 1 EXAMPLE NO. 2
NUMBER A 0.0101 0.0101
NUMBER B 1.1001 0.1010
A TIMES B 1.00101101 0.00110010
RESULTS AFTER
ROUNDING 1.0011 0.0011
CHOPPING 1.0010 0.0011
VALUE OF ERROR
ROUNDING 1.00000011 1.00000010
k CHOPPING 0. 30001101 1.00000010

FROM EXAMPLE NO. 1
A TIMES B = 1.00101101 ’#

\_

—
FOR ROUNDING: A "ONE™ IS PRESENT IN THIS BIT POSITION.
SO WE ADD A "ONE' TO THE NEXT HIGHER BIT 1
POSITION AND DISCARD THE LOWER 4 BITS.
THE RESULT IS EQUAL TO 1.0011. THE SIGN
OF THE 8-BIT WORD IS IGNORED IN THIS
OPERATION.

FOR CHOPPING: THE LGWER & BITS ARE DISCARDED.

NOTE: ALL NUMBERS IN TMIS EXAMPLE ARE BINARY.
T4 EKROR IS DEFINED AS THE QUANTITY TMAT IS
ADCED TO (A TIMES 8) TO GET THE ROUNDED OR
CHOPPEDG RESWLT.

to




where x(nT), n =0, 1, 2, .... is a sequence of numbers obtained from the analog
waveform, X(t). This number sequence is the input to the digital filter. The resulting
output sequence from the digital filter is v(inT), n =0, 1. 2, ... . The input sequence.
x(nT). results from periodic sampling of X(t) at a rate I, = 1/T. and subsequent conver-

sion of these samples to digital numbers (analog-to-digital conversion). Figure | is a
block diagram of the operations needed to produce a digital filter which is cquivalent to
the analog filter.

Equation (1) requires three arithmetic operations:  multiplication. addition. and
subtraction. Chopping or rounding crrors occur only in multiplication. Overflow errors
oceur in addition and subtraction.* Note also that the coefficients K; and L; canno’ be

specified exactly. in general, due to the finite word length in the computer. Consequently.
the desired (unquantized) coefficient value differs by a fixed amount from the quantized
coefticient value, and the filter does not have the characteristics desired. This may be a
problem if the filter is sensitive to small changes in the value of the coefficient. Furiher-
more, the recursive equation leads to dead-band and other effects (reference 2). We will
not discuss these effects further since we are only concerned with the problem of
multiplication error generation.

This report consists of three major sections.  The first section, Quantization
Errors, reviews the theory of quantization crrors, which forms the foundation of the
theory of multiplication vrrors used until now. The second section, Multiplication Errors,
defines the deterministic and statistical properties of multiplication crrors and compares
multiplication crrors with quuntization ¢rrors. The final section, Summary. summarizes
the analysis performed in the second section and suggests an approach to further analysis.

BACKGROUND

Multiplication crrors are similar to crrors that occur when an analog waveform
sample is quantized. It seems natural, therefore, to extend the conclusions of the analysis
of quantization vrrors to ihe analysix of multiplication errors, Quantization cerrors have
been analyzed by Bennett (reference 3), Widrow (reference 4), and Shaver (reference )
Benncett found that quantization is equivalent to adding an independent (white) noise that
is uniformly distributed over the quantization interval q. to the original tunquantized)
samples.** He also determined the autocorrelation of succescive samples of the quantiza-
tion crrors as a function of the autocorrelation of successive samples of the analog wave-
form. The analog waveform was Gaussian. Widrow deternuncd the difference between
the actual variance of the quantization error and the variance of the uniformly distributed

2An oneeflow aocrrs wlion e sem of Tao dambors o (v lergy for the coompatr wond keapth For cugmple, the wom
of 01014 , ¢nd 0.1000 4 is wot repreventebie, The corrv gonenatod By the qumt fres o plecy o g dinee tie Nt pasi

tion i frout of the bastry point is ascd To doswote 1he sitn of the nambee

% is the sicr of the hasiv guantisstion isforvel. Complete defimitim of the quentizatoon pruea is givvn biee in thy
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quantization crror. Shaver later derived the cross-correlation between the quantizer input
and quantization crror at the same instant. Both analyses were for a Gaussian analog
waveform.

As we shall sce, chopping and rounding are exactly the same operation for multi-
plication crrors as for quantization errors. This has been noted in work on the effects of
multiplication crrors in digital computation. For example, Knowles and Edwards (refer-
ences 6, 7, 8) assumed that multiplication errors could be treated as an additive, independ-
ent white noise because they are similar to quantization errors. They analyzed the effects
of this noisc on the steady-state performance of digital control systems of the form given
in Equation (1). As a chec: on their :ssumptions, they computed the autocorrelation
functions of some multiplication error senuences (reference 6, p. 2384). A number of
word lengths, multiplicatior coefficients, and sampled analog waveforms were used. They
concluded that multiplication roundoff error spectra are essentially white with respect to
practical sampled-data systems. Unfortunately, the paper was not clear as to what kind
of sampled-data system was used for the measurements. Also, the rms value of the analog
sighal relative to the quantization interval was not given.

Gold and Rader (ceference 9) also linked quantization errors with multiplication
errors, referring to the work of Bennett. They experimentally verified the mean-square
output noise for a one-pole digital filter as a function of the pole position and word
length (28 and 29 bits including sign). They did not compute correlation of successive
output errors, nor give the rms value of the analog signal. Gold and Rabiner (reference
10) essentially followed Gold and Rader in their assumptions,

All investigators experimentally verified the assumed similarity of quantization
errors to multiplication errors by measuring the mean square output noise of a finite word-
length digital filter. Only Knowles and Edwards (reference 6) computed correlation of
error sequences, and did so for specific systems and specific word sizes only.

QUANTIZATION ERRORS

Later in this report w2 will compare the statistical propertics of quantization
ecrors with those of multiplication c¢rrors. This section is @ review of theoretical results
needed for such a comparison.

QUANTIZER CHARACTERISTICS: DETERMINISTIC

A quantizer is used in an analog-to-digital converter (ADCON). An ADCON con-
verts time series samples of an analog signal to digital form so they can be aceepted by a
digital computer. A block diagram of the process is shown in figure 2. The block dia-
gram does not represent the circuit operations, but shows the equivalent operations in a
mathematical sense. We will discuss quantization first and then cover the other necessary
aspects of the ADCON.

§ ek i e
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In figure 2 the sampler output voltage x*(nT) is a random variable whose
probability density function is continuous in the interval -B < x*(nT)y< A. -B and A
are lower and upper limits on the range of x*(nT) which are set by the physical nature
of the sampler and quantizer.

Quantization is a process of subdivision of the range of x*(nT) into class intervals.
For rounding,

where

(A and B are chosen to be integer multiples of q),

Each class interval is of equal width q. The quantizer output voltage is iq. This
is the center value of the class interval. For example, it (3/2)q < x*(nT) < (5/2)q, the
quantizer output is 2q volts.

The difference between the quantizer output x'(nT) and the input x*(nT)
is the quantization error eq(nT).

That is,

eq(nT) = x'(nT) - x*(nT). (3)

(Sometimes the error is defined as the input minus the output. Our convention assumes
that the quantization crror is added to the quantizer input.) In the case of equation (2)

this represents a rounding crror since the input samples x *(nT) are rounded to the ne r-
est class interval center value. We will call the sequence of errors eq(nT). n=0,1,2, ..

quantization noise or the quantization process. Note that qu(nT)I < q/2.

For chopping,

iq < 1 x*(nT)I < (i + Dq, (4)

where




The quantizer output voliage is (sgnx*)iq, where

I.x*>0
sgnx * = (5)
-1, x*<0,

and iq is the value of the lower end of the class interval defined in equation (4). The
sign of the quantizer output voltage is the same as the sign of x*(nT). For example, if
3q < Ix*(nT)I < 4q and x*(nT) < 0, the quantizer output is -3q volts. Note that
leq(nT)I < q.

Quantizer input/outout characteristics for both rounding and chopping arc shown
in figure 3. The equivalent ADCON outputs are also shown. The quantization error is a
deterministic function of the quantizer input. The functions can be written as follows:

Rounding:

eq(nT)Ix* =-x* +iq. (6)

where

and

-q/2 < eq(nT)lx* < q/2.

Chopping:
(i=0,i.2,.., x*>0

-q < eq(nT)l <0
X

»
eq(nTHx*=-x*+iq ﬁ _ . (N
|=0.'l,".‘....., x*< 0

\ 0< eq‘"T"x* <aq.

These functions are shown in figure 4.
Figure § is an example of an analog signal and the results of sampling and quanti-
zation. Results for both rounding and chopping are shown. A couple of features are




ROUNDING

-Zg .59 .39 .9 .9 .39 .5 ,7q
2 2 2 2 "2 "2 2 2

QUANTIZER INPUT VOLTAGE

CHOPPING

-3¢ -2q9 -q +Q +2a0 +3q

QUANTIZER INPUT VOLTAGE

SIGN BII N BITS
+3q 00--:011
+2q 00-+-010
+q 00---001

o) 00-++000
-q 10-+-001
-2q 10+--010
-3q 10-+.011
QUANTIZER ~,0.
OUTPUT OUTPUT
VOLTAGE {

+3q 00-++011
+2q 00--+010
+q 00-+-001
N 00+++:000
-0 10-+:000
-q 10:++001
-2q 10++:010
-3q 10:++011

Figure 3. Quantizer input/nutput characteristics.
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evident.  First, the chopping errors are generally larger than the rounding errors. The

rounding-crror scquence is bounded by £q/2 and the chopping error sequence bounded by

tq. Sccond, the chopping-crror sequence is quasi-periodic and dependent on the polarity

of the analog signal input. The quasi periodicity can be eliminated by adding a d.c. level

to the analog signal. This results in a d.c. bias in the error sequence, though.
Analog-to-digital conversion results in a binary number, not an analog voltage.

The placement of a binary point in this number is not relevant as far as ADCON operation

is concerned. It becomwes important to the user because scaling is necessary in order to

interpret the ADCON number properly. For our purpose we will assume a leading binary

point. Then, if the quantizer output voltage is x'(nT) = iq, where i = ... -1, 0, +1, ..., the

vorresponding ADCON output is just x(nT) = i>"N. There isa multiplicative relation «
between x'(nT) and x(nT). That is. x(nT) = ax'(nT). If x'(nT) = q, then x(nT) = N,

) Thus.a = Z'Nq"l. This scale factor is included in figure 2. Note that the size of the least
significant bit at the ADCON output is equivalent to q when referred back to the ADCON
input.

{ QUANTIZER CHARACTERISTICS: STATISTICAL

!

We will consider the following questions about the statistical characteristics of quan-
tization crrors and quantization error sequences:

1. What shape does tine quantization error distribution density (d.d.) have?

2. What are the mean and variance of quantization errors”

3. What conditions must apply for the error sequence to be considered a source of
white noise?

4. What conditions must apply for the crror sequence to be uncorrelated with the
signal sequence?

! Distribution Densities of Quantization Errors

We will show how the quantizer input d.d. determines the quantization error d.d.
For rounding. the probebility that the quantizer output is equal to iq is

P, 41q) = Prob {x' = iq} s

- Prob {(i- Na<xesiv ..;)q}

41721
= px.(x‘)dx‘ (8)
(i-1'2




where p, #(x*) is the d.d. of the quantizer input. The argument of the random variable

x* (the sequence index nT) is omitted since the sequence is assumed stationary.
The joint d.d. of the quantizer input x * and the quantizer crror €q is

peq x‘(eq.x‘) = Pe,,  Jl€qI XTIPya(X?)

qlx

]

2 Bleq - lia - X*])pyalx*), 9

j=~o0

where «q/2 € €q < q/2 and 8(x) is a delta function. We define 8 x) as a distribution

which assigns to a continuous function ¢(t) the number ¢(o). That is, we use the special
integral definition (reference 11, pp. 269-282)

/ S(e(v) dt = o).

We assign infinite limits to the summation for the sake of simplicity. In reality the limits
are given by equation (2).
The d.d. of the quantizer crror is then

p‘q“‘l'= / P,q x.“q"‘"d"‘

o

/ { Zéleq - lig - x'hpx.cx‘)} dx*

oy 200

™

L
‘ [ :mq ~liq-x‘hpx.(x')}dx'
| e o g

o
& prcliq—cq). -q'2<¢q<q’2. R ]
L




For chopping. the probability that the quantizer output is equal to iq is

( (itl)q x*> 0
f Py »(x*) dx*,
iq i=01, ..
P, (iq) = < (1)
1q x*< 0
[ Py s(x*) dx*
\ J(i-1)q =0 -1 ..

The joint d.d. of x* and €q is

Pe, coqr = E beg - lig = x*Dpatx*)
i=0
x*>0
-q<eq<0

+ Z 6(eq - lig = x*Dpy o x*). {12)
i=0
x*<0
(See equation 7) 0<ey<q

The same procedure yiclds the following d.d. of the quantization error.

R -
Pegleq) * 2, pyeliacer D pyatia -eq) an
=0 i=0
-q<eq<0 0<eq<q

(We ignore the terms for €9 0. They have the effect of introducing a deita function in
the d.d. for € This is because of the limits on € imposed by equations (2) and (4).
We could have chosen the limits 5o that the d.d. for L is continuous at €= 0. but this

would have further complicated the presentation.)

Equations (10) and (13) show that the quantization error d.d. resuits from a
mapping of the quantizer input d.d.. The mapping equations are (6) and (7). The nature
of the mapping is illustrated in figures 6 and 7. Each figure shows the following d.d.'s:
quantizer input. quantizer output, quantization error. and the joint d.d. of the quantizer
input and the quantization error. A rero-mean Gaussizn d.d. is shown for the quantizer

inpul. o/q = 1, where 0" is the variance of the d.d..

14
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The error d.d. for chopping is wider than that for rounding. Also. the error d.d.
is definitely not uniform for chopping. but is for rounding. The d.d. for rounding is actu-
ally not uniform, but is so ncarly uniform that the graph scale won't show the variations. The
d.d. for chopping will become more uniform as ¢/q is increased. However. the quantiza- ]
i tion error will always be negatively correlated with the quantizer input. We consider only
rounding from now on, except when we look at multiplication errors.

%
: Widrow’s Results
] The following quotation is from a summary in reference 12 by Widrow (see slso ]
‘ reference 4). k
The probability density of a quantizer output signal is discrete, consisting '
of a series of uniformly separated impulses with spacing equal to the quan- H
! tization box size g. This density has a characteristic function ( Fourier

transform) which is periodic with a “frequency” ¢ = 2m/q. A comparison

of quantization with the addition of an independent uniformly-distributed
(between £q/2) noise shows that the quantizer output distribution density
consists of samples of the distribution density of signal plus noise. Satis-
frorion of a quantizing theorem ensures that statistics can be recovered

3 ' from quantized samples and that quantization noise itself is precisely flat-

3 topped distributed. The quantization of high-order (correlated) signals
compares with the addition of first-order noise (statistically independent,
white). When a multidimensional quantizing theorem is satisfied, quantiza-

tion noise is first-order and uncorrelated even though signals may be highly
correlated.

The quantizing theorem referred to says essentially the following: supposc the
3 “frequency” ¢ = 2m/q is twice as high as the “highest frequency component” contained
in the shape of the quantizer input d.d. Py *(x*). 1t is then possible to recover Py X¥)

from the quantizer output d.d. p,(iq).

In most cases the theorem is not completely satisfied. The quantization error is
then only approximately uniformly distributed between £q/2. The quantization error
variance will be in error by some amount. Widrow obtained a formula for the error of
the quantization error. This was for a zero-mean Gaussian guantizer input. Rounding
only was treated. The error is, to a close approximation,

T

g T

2

[4
€, 202 exp (-2n20% /q*) (2 +‘§§ =73) (14)




The proportion error is
€y

q*/12

2 2
=" . 2 ( _q__-_._l_) 15
_4q exp (2120 /q*) oL 32 (15)

This equation is a monotonic decreasing function of ¢/q. For example, the proportion

error for o/q = 1.0 is e'v < 15X 10‘7. a verv small number. This means that the quan-

tization error d.d. is almost uniform for a low value of a/q.
Bennett’s Results

Bennett (reference 3. discussed the distortion effect of sampling and quantization
on analog waveforms. One of his results is the following (reference 3, p. 455).

Distortion caused by quantizing errors produces much the same sort of

effecis as an independent source of noise. The reason for this is that the

spectrum of the distortion in the receiving filter output is practically

independent of that of the signal over a wide range of signal magnitudes.

Even when the signal is weuak so that only a few quantizing steps are

operated there is usually enough residual noise on actual systems to

determine the quantizing noise and mask the relation between it and the

signal.

Bennett obtained a lengthy formula for the autocorrelation of the quantization
errors as a function of the autocorrelation of the analog waveform. This was for a zero-
mean Gaussian quantizer input. He reduced the formula to an accurate approximation
which we reproduce here (reference 3, p. 467, equation (2.26)). The notation is changed
to conform to this report.

E (T) 2 l ] 1 02
x*(O) 02 212 Z 7 ©Xp (‘4‘“2"2(1 - rx*x*(f))ai)
m=

m




i

and
RX*X*(O) = 02.
(P._\y('r) is defined as E{ x(t)y(t + 'r)}

and

Ryy(?)

/Ry OR4y(0)

E is the expectation operator.) Substituting these expressions into equation (16) we get

rxy(r) =

e ¢ (1) =% Z —3 exp(-—4n21r3(]—rx*x*(r))o—f). (18)
q9°q ¢ po|m q

This equation is a monotonic decreasing function of Ty oy #(7). It is shown plotted in

figure 8 for o/q = 1/3, 1/2 and 1.0. Based on this equation, the quantization error
sequence can be considered a source of white noise for values of ¢/q close to 1.0 and for
quantizer input correlation coefficient values of 0.9 or less. Of course, the higher o/q
becomes, the higher the quantizer input correlation coefficient can be for the white noise
assumption to hold.

Shaver’s Results

Shaver (reference 5, pp. 7-8) derived an expression for the cross-correlation
between the quantizer input and the quantization error at the same instant. Since the
reference is not widely available, we will reproduce the derivation. (This will be done for
zero-mean Gaussian processes and rounding.)

The cross-correlation may be written

Re x+(0) = Efegx*}

o0 q/?
= * * *
/ //q €qX peqx*(eqx )deq dx*, (19)
-Q0 —q A
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x*x*(T)

Figure 8. Courrelation coefficient of quantization errors vs. correlation coelficient
of successive quantizer input samples,
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Substituting equation (9) into the above, we get:

o0 q/2 oo
Reqx*(0)= / x* ‘/ €q Z&(eq—[iq— x*l)deq;px*(x*) dx*
- q

-

/ x*eqpx*(x*) dx*, (20

o0

-q/2 j=—00

The relationship between the quantization error and the quantizer input is given
by equation (6). The quantization error function may be writien as a Fourier series in X*,

o0 . k * ‘
eq(x*)=% kz;l( 11<) sin(zﬂgx ) (21)

Substituting equation (21) into equation (20), we get

oo 5 "
X,,=(0 = %Z—k)— / x* sin("ngx )px*(x*)dx*. (22)

If we consider a zero-mean Gaussian quantizer input with variance g~, equation
i {
(22) reduces to

b
Re, x+(0) = 20° Z( DK exp [-2( ke ) ] (23)

k=1
The cross-correfation coetlicient is:
R «(0)
€ X
q

l'et x*(0) = . 24
1 \/ Reqeq(O’R x*x*(0)

Since Reqeq(m = 13/12. and Ry wy #(0) = 0=, we obtain

fe x*0) = 4\/_"2( l)ke\p[ (“") ] (25)




If ¢ > q. a good approximation is

o]
- g 207
e x¥0) = -4 ﬁq exp [—21r q2]' (26)

This equation. like equation (15), decays extremely rapidly for ¢ > q. Thus, the quan-
tization error sequence is essentially uncorrelated with the quantizer input sequence for
g>q.

MULTIPLICATION ERRORS
MULTIPLIER CHARACTERISTICS: DETERMINISTIC

The model we use for a multiplier is shown in figure 9. The multiplier input
sequence x(nT), the multiplication constant J, and the multiplication output sequence
y(nT) are all in the form of binary words of length N bits plus sign. Remember that
v(nT) results from rounding or chopping the product x(nT) times J, which is 2N bits plus
sign. The error sequence € (nT) represents the fictitious number sequence that would be

added to the product x(nT) times J in orderto produce y(nT).

Table 2 shows the rounding and chopping errors for all possible combinations of
x(nT) and J. and a word length of N = 2 bits plus sign. Note that the errors for J < 0
are opposite in sign from the errors for J > 0. This occurs in general for N > 2 as well.
We will only consider results for 5 > 0 from now on. More importantly, given a particu-
lar value of x(nT). the value of the error depends on the value of the multiplication con-
stant J. We have more to say about this after the next paragraph.

The number of values that the errors can take on depends on the word length.
The number of values is:

Rounding: N4

Chopping: AN+

We will use the case of table 2 as an example. We enumerate all possible errors
in table 3. The number of error values are: rounding. 5: chopping, 7. Note the bounds
on the errors. The rounding errors are bounded by * one half the least significant bit
(l.s.b.) in the (N + 1) bit computer word. Similarly. chopping errors are bounded by
& one L.s.b.. Previously. we showed that one Ls.b. was equivalent to the basic quantiza-
tion interval ¢ Thus, il we refer the scale of the multiplication error back to the quan-
tizer input, th hounds on the multiplication error are the same as for the quantization
error. This 1s why the error values are shown as an equivalent voltage referred to the
quantizer input. This is the way we wil! show multiplication error magnitudes in the rest
of this report. The value of N we use at any time is reflected in the denominator of the

fractions that are used. That is. the denominator is equal to aN,

o de ]
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Table 3. Enumeration of all possible multiplication crrors.
N = 2 bits plus sign.

ERROR VALUE

1
I 1

EQUIVALENT VOLTAGE

- BINARY REFERRED TO
NUMBER QUANTIZER INPUT
ROUNDING: 0.0010 2,
0.0001 -}; q
0.0000 0 el < %
1.0001 -% q
1.0010 -2 4
: CHOPPING: 0.0011 2aq
, 0.0010 {- q
0.0001 ta
5 0.0000 0 lecl < q
1.0001 ¢ q
1.0010 -%q
1.0011 -% q

POSITION OF LEAST SIGNIFICANT
BIT FOR A 2-8IT WORD LENGTH




In figure 4 we showed a quantization error function which was related to the
quantizer input. It represented a mapping of the quantizer input d.d. onto the quantiza-
tion error d.d. We will do the same here for multiplication errors. That is, we will con-
struct mappings of the multiplier input d.d. onto the multiplication error d.d. Data of
the form used in table 2 were used for figures 10 and 11. Figure 10 shows representative
chopping error patterns for word lengths of N = 2, 3, and 4 bits plus sign. (All possible
values of J are not shown). All possible values of the multiplicr input are arranged along
the horizontal axis. The value of the resulting multiplication error is pintted against the
vertical axis. Each plot is for a particular value of J. Figure 11 is similar to 10; the
main difference is that rounding error patterns are shown. In both cases, the error pat-
tern is simply a mapping of the multiplier input value intc a corresponding multiplier
error value.

We compare figures 10 and 11 with figure 4. One basic dissimilarity occurs
because the multiplier input is a discrete quantity and the quantizer input contiruous. If
the quantizer input were discrete (in a sense, prequantized to a finer quantization interval)
we would observe an error pattern similar to that for the multiplier. However, the multi-
plication error pattern also depends on the value of the multiplier, J. The similarity
between quantization and multiplication is that the error bounds are the same: :q/2 for
rounding and ¢q for chopping.

There is one special feature illustrated in figure 10 which we will use in our sta-
tistical analysis of multiplication errors. Look at the three plots starting with (N = 2,

J = 1/4) on the left and ending with (N = 4, J = 4/16) on the right. The piot pattern
for N = 2 is a basic pattern for longer word lengths. That is, the pattern for x = 0, 1/4,
2/4, 3/4, (N = 2) is the same pattern for x = 0, 1/8, 2/8, 3/8 (N = 3) and for x = 4/8,
5/8, 6/8, 7/8, (N =3). Similarly, the pattern for x = 0, ~-1/4, -2/4, -3/4 (N = 2) is the
same pattern for x = 0, -1/8, -2/8, -3/8, (N = 3) and for x = -4/8, -5/8, -6/8, -7/8

(N = 3). This same efiect occurs when we go to a word length of 4 bits. The basic pat-
tern is reprated 2 total of 4 times each for x 2 0 and x € 0. We conclude from the
figure that most error patterns are based on basic patterns. For example, suppose

J =216 (N = 4). We can reduce this fraction to the value 1/8 and no further. The
shortest word length we can use to represent this fraction is N = 3. Thus, the basic error
pattern is generated for (J = 1/8, N = 3). And the error pattern for (J = 1/16, N = 4) is
a copy of this repeated according to the above procedure. The patterns in figure 11
show this same effect.

Figure 12 shows an example of a multiplier input sequence and the corresponding
output and error sequences. This is similar to figure 3, the comments made for figure S
alvo apply herc (see p. 8). In addition. note that the resuit of multiplication before
rounding or chopping wili be less than the value of the input to the multiplier. This
result depends on the value of J. The bounds on the multiplication error remain the
same. This is to be contrusted with the quantizer where no operation is performed on
the voltage belore ‘the quantization error is introduced.




=

v

e s R e ——. T A

e . s s

Ned e

N22 8ITS

Do

X —» X
—
-w e ',
Fayesy AAAAAALLL QAL L ARA L 022322 ‘
R ’i:’-
[« B e T I, J,2/ n.‘
] ) =44
- - - ] G
% J . . :
. . - - L]
R TR%

r b PR

: .. 1 - ..

- - ] * *

) . - ‘. L]

ol 1 P .

] Je °

' ® T

) . - - -

) . ] . .

) . 3 . .
.\.j -‘ j 'o ‘-

N:J BITS Ned BITS

Fipwre 10, Chapping crror patic s




N -
X - X — X =
E "/,,_3:‘/, Ve 0 N Mg 0 w Yy
P RV VTSV I S IV su s T yveTV VY
v KX E I EXRY . %-3 cenesoen
. €& o J=1/2 o J=2/4 [} Ja S
Yade -z‘qj.. '\0’1".....‘
N=1BIT e
+7
I%g
3¢
%
I
N=2 BITS

J=34G
J=%e

Y

N:=3BITS %
& oF e = Jhg
il . :
N:4BITS
<
2 Figure [1, Rounding error patterns,




l l ] l MULTIPLIER
0 | . l i J i i INPUT
] ] | ' 11 | SEQUENCE
x{nT)
-7[8..
3[8"
: i | i MULTIPLIER
i 1 ouTPUT
: o) l l . _— SEQUENCE 1
i [ l I | I I l H | (ROUNDING)
< y (nT)
-3g"
B MULTIPLIER J
q/2 1 ERROR
13 J 1 I l J L I J L 4 SE ENCE
¥ T I r T I T T T AL B ) QU
-q/2 - (ROUNDING)
] e (nT)
; uw c
2]
=
5 2/8 7 [ MULTIPLIER
- OUTPUT
2 0] I y l J l 1 SEQUENCE
) ! I | | 1 cropping)
! -2/8 - y(nT)
- 97 MULTIPLIER
Ll LI e
SR o B B 1 . L. L1 SEQUENCE
; I | ' ‘ ] (CHOPPING)
} -q 4 ec(nT)
TIME —
i
J=3/8 N=3
i Figure 12. Example of a multiplier input scquence and multiplier output and error sequences.
¥

i _p G T




DISTRIBUTION DENSITIES OF MULTIPLIER ERRORS

Figure 13 is an example of marginal und joint d.d.’s for a multiplier input and the
resulting multiplication error. Chopping is shown. Figure 14 is the same except that
rounding is shawn. The multiplier input d.d. was derived from a zero-mean Gaussian
input to a quaniizer. Roundiny is assumied for the quantizer. The ratic of the standard
deviation to the gquantization interval o/q was 4.0. N =4 and J = 3/16. It is clear how
the multiplier input d.d. is mapped onto the multiplier error d.d. by the error pattern.
The limits on the mudtiplication erros values are obvious in both figures. Also note that
the multiplication error d.d. is strongly correlated with the multiplier input d.d. We will
drop consideration of chopping errors at this point.

Figure 15 shows a variety of multiplication error d.d.’s. for the same multiplier
input d.d. as used for figures 13 and 14. Rounding is assumed. In some cases, the d.d.’s
are approximately unitormly distributed. In other cases they are not. The dependence
on the value of } is clear. These figures illusirate further the dissimilarity between mul-
tiplication errors and quantization errors.

ROUNDING ERRORS: STATISTICAL
Model For Computer Analysis

Consider equation 1. If x(nT) is a zero-mean Gaussian random process, y(nT) is
also a zero-mean Gaussian random process. We will show this by an example using a
first-order linear difference equation:

y(nT) = Ky(nT - T) - x{(nT) n=0,1,2, .. 27N
The first value of x(nt) is x(0). We define y(-T) = 0. Then y(o) = -x(0). Carrying out
the above equation a number of times, we find that
n ,
y(nT) = Y K- (T, (28)
i=0

y(nT) consists of a linear, weighted sum of Gaussian random variables. This implies that
y(nT) too is a Gaussian random variable. Also, since

E(x(nT)] = 0, Ely(nT)] = 0.
We can use this same procedure for other forms of equation 1. All of this

assumes that quantization and computation errors are not present. We have shown that
quantization of a Gaussian random variable results in a discrete d.d. which is approximately

30
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Gaussian in appearance. We will assume this same d.d. for the input and output of a
digital filter. The output d.d. will only be approximate due to the addition of computa-
tional errors. Thus, in equation (1), the x(nT) and y(nT) are assumed to be governed by
the same d.d. That is, they are the result of quantizing (with rounding) a Gaussian
sequence of random variables. With these assumptions we simplify our analysis model to
that shown in figure 9.

The analyses described below have been programmed and run on a CDC 1604
computer.

Multiplication Error Variance
The variance of the computation error was computed as
Var(e,) = El(e, - €)%
N

D el Pyia. (29)
Ci X

i=-2N41

The variance depends on the following parameters: J, N, and 0/q. € is the computation
i
error that results when the multiplier input is equal to 2N, (Remember that the deci-

mal form of the ADCON output is i2”N when the quantizer input is in the interval
(iq * q/2)) As we have shown, the value of eci depends on the value of J.

The variance was computed for the following parameters: N=7.1~= i2-N

(i=1,2. .. 27 . 1): a/q = 2.0, 4.0, 8.0, 16.0. Results are shown in figure 16. The
variance for a uniformly distributed error is shown as a horizontal line in the center of
the graphs. The interval of +10 percent of this value is also shown.

The first graph is for g/q = 2.0. Except for a small range of values for
J ~ 32/128, 64/128, and 96/128 most of the values of error variance fall outside the 10 per-
cent interval. For comparison, the proportional error in the variance of the quantizing error

for o/q = 1.0 is about one part in 107. So. we see that the performance of the compu-
tation error variance is very much worse than that of the quantizing error variance. As
a/q is increased, the computation error variance converges to the value of a uniformly
Aistributed error for most values of J. For certain values of J the error variance con-
verges to some other value, (Sce values for J = 16/128, 32/188, ..., 112/128)

The data points in figure 16 are shown connected for ease in visualization. This
does not imply that we are safe in interpolating variance values for N > 7 and values of J
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that are representable only for N > 7. For example, we could have plotted variances for
N = 6. Then, the two downward spikes at J = 43/128 and J = 85/128 would not have
been indicated.

There is an upper limit to the standard deviation allowable for the input to a mul-
tiplier. This limit is set by the size of N, and is imposed at two points. The first

is the input to the quantizer. If the quantizer input exceeds (N - 1/2)q volts overload-
ing occurs. The second point is the output of the digital filter represented by equation
(1). It is possible for the sum of all the terms to be too big for the word size (1.0 in
this case). (That is, overflow occurs.) In the practical case, we can limit the standard
deviation so that quantizer overloading or register overflow will occur infrequently. A
good value for the standard deviation is one-fourth the voltage which is equivalent to the
maximum size of the word. The probability of overloading in either the positive or

negative sense is then about 6.33 X 1073, In figure 16, the maximum value of ¢/q that
can be accommodated for N = 4 is g/q = 4.0. Other maximum values are N = 5,
o/q=8.0:N=6,0/q=16.0:N =7, g/q = 32.0: etc. We call these limits on g/q the 4o
load limits.

Autocorrelation Computations

The autocorrelation coefticient for two successive computation errors is

E{enDen-T)}
Efel(n T}

r T =
el

= . l=|l‘ll-ﬂ2| (30}

Z eg_Px'(iq)
i

j=-2Na |
where

Pyrytinig) = Prob{x'(an) =iq. x'(nyT) = jq}

Prob{(i -l,)q <Xy Tr< (it :l,-)q, 4- %)q < x*maM< (j+ l:)q}

(i+1/2)q  fG+1/2 q
/ Pywy sl x* (0T x*(naTHdX*(n) T dX*(nAT).
G-1'2yy  J(=1/2)q

(31)
36
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and Py, x( x*(nT), x*(n~T)) is a bivariate Gaussian d.d. with autocorrelation
ry* x#(T). Pyry(iq, jq) was obtained numerically using Simpson’s rule. (Note that the

results described 2re for a given autocorrelation value of the quantizer input, not the mul-
tiplicr input.)
The autocorrelation coefficient was computed tor the following parameters:

N=6:0=i2N(i=1.2..20 - io'g=1. 2 birusm = 0.9 5, (1) is

x*x*l €
L

plotted as a function of J in figure 17. Here 100, the data points are shown connected
for visual effect only. (Results for o/q > 6.0 were not obtained due to the amount of
computer time needed.

The values are also much higher than the value of the quantizing error correlation
coefticient for g/q = 1.0 (sce figure 8: when ryxgx = 0.9, reqeq =.0117). In figure 17,
for g/q = 6.0, only two valucs of J(13/64 and 51'64) vield a lower value. Other values
of J yicld lower values for /g < 6.0. But the computation error correlation coetficient
later comes back up when 6/q = 6.0. The coetficient viahies seem to stabilize for
J =16/64, 32/64 and 48/64 for cven this restricted range of 6'q. Unfortunately. since
we do not have data for g/g > 6.0, we can only speculate that the correlation coetticient
will be low enough for most cases of interest. It is not low enough. for the most part,
when a/q < 4.0, nor for N € 4 when the 4o load limits are taken into account.

Cross-Correlation Coefficient

The cross-correlation coefticient between the multiplier input x(nT) and the
resulting multiplier error € (nT) at the same instant is

Te, x(0) = 'ecx'm)

E{ x'(nTe( nT)}
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The cross-correlation coefficient was computed for the following parameters:

N=6J=irN (i=12..20_1y o/q =1, 2. ... 30. Its behavior as a tunction of
o/q is evident in figure 18.

Each curve iends to vary wildly starting with6/@ = 1.0. Then. it settles down to
some non-zero positive value. The reason tor the positive value can be traced to the
appearance of the error patterns in figure 1. When x > 0. the mapping onto €. oceurs

for mere positive values of € . than negative values. When x < 0. the mapping oceurs tor
more negative values of €. than for positive values. Each curve scttles more quickly for

those values of J that are represcatable tor N < 6. J = 32/64 is the most extreme
example. Next comes J = 16/64 and 48/64. Then, J = 8/64. 2464, 40°64 and 56/64.
and so on. Values of J representable only for N = 6 seem to have the least tendeney to
settle down in the range shown for o/q. This behavior is correlated with the behavior of
the multiplication crror variance as a function of o'q.

The rate of settling down seems to be inversely correlated with the final non-zere
value of the cross-correlation coefficient. That is. the faster it settles down. the farther
from zero it stays as a/¢ becomes large.

Generalization of these results for N > 6 is not always safe. Figure 19 shows
why. It is a plot ol the cross-correlation coefficient as a function of J for a/q = 30.0.
The plot is in two parts. The top part is tor values of J that are representable for both
N =6 and 7. The bottom part is for only those values of J that are representable for
N = 7. The top is uniform in appearance. But, it is obvious that pitfalls occur it we try
to extrapolate performance for N > 6 for numbers that are only representable for N > 6.
The bottom part shows additional variations that are not predictable by looking at the
top part. They are also significantly non-zero in some cases when we consider
that a/q = 30.0 is very close to the 4a load limit for n = 7. Incidentally. the spikes that
occur for J = 43/128 and J = 85/128 are at the same position as the downward spikes in
figure 16 for a/q = 16.0.
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Figure 18. Cross-correlation coefficient between the multiplier input X(nT) ¢ nd the resulting
multiplicr crror wc(nT) at the same instant.
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SUMMARY

We have examined the following statistical properties of quantization and
multiplication rounding errors:

1. d.d. of the error,
vyriance of the error,
autocorrelation coefficient between successive error values, and

4. cross-correlation cocfficient between the quantizer or multiplier input with
the resulting errors.

w

Specitic results were obtained for zero-mean Gaussian random processes as follows.

QUANTIZATION ERRORS

The statistics of quantization errors depend only on the ratio of the process
standard deviation to the quantization interval size («'q). The mapping of the quantizer
input d.d. onto the quantization error d.d. is continuous. Consequently, tor a/q = 1.0.
the error d.d. is almost exactly uniform between +q/2. and the error variance is very near

q2/12. Both the autocorrelation and the cross-correlation coefficients were negligible.
Furthermore, the equations show that the quantization error approaches arbitrarily close

to q=/12 as ¢/q increases, while the autocorrelation and cross-correlation coefficients
approach arbitrarily close to zero.

MULTIPLICATION ROUNDING ERRORS

For rounding errors, the above properties depend not enly on ¢/q. but on the
word size, N, and tle value of the multiplier, J. as well. Furthermore, the discrete nature
of the computer word causes a discrete mapping of the multiplier input d.d. onto the
multiplication error d.d. Consequently, for the limited range of parameters considered,
most values of J yield an error d.d. which is not uniform in the continuous sense but

, . 2 . .
shows a variance approaching q=/12. Similarly, most autocorrelation and cross-
correlation values approach zero, but stabilize at some non-zero value as ¢/q becomes
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large. However, some values of J result in large. non-zero autocorrelation and

cross-correlation values and a variance which diverges widely from q=/12.
Shortcomings of Present Analysis

It should be remembered that the results are based on data obtained for digital
words of size N < 7 bits plus sign bit. We have not considered the possibility of round-
ing off fewer bits ieaving a result of multiplication which is greater in size than the multi-
plier input word size. Neither have we obtained data for word sizes greater than 8 bits.
Operation with word sizes greater than 8 bits is of interest due to the increased availa-
bility of process control computers in the 12- and 16-bit word-size range. (11 bits plus
sign and 15 bits plus sign.)

An Approach to Further Analysis

Since generalization of the results of this paper to word sizes greater than § bits
has its shortcomings, we suggest the following approach. First, assume ideal multiplica-
tion error statistics (shape of d.d., variance size, and auto- and cross-correlation coeffi-
cients) for the analysis of the effect of multiplication errors. Analysis approaches are
worked out in reference 2. Once the preliininary design is fixed, perform a Monte Carlo
simulation of the digital filter in a digital computer. Then compute the error d.d., the
error variance, and auto- and cross-correlation coefficients for each multiplier coefficient
in the filter. Do this for a representative set of filter input sequences. (Sequences of
correlated Gaussian random variables are easily generated using computer programs.) If
the results for a multiplier coefficient are bad, it may be possible to get good results by
using a siightly different coefficient value. Of course, the change in filter characteristics
wotutld have to be acceptable.
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LIST OF SYMBOLS

A.-B: upper and lower limits (volts) of the sampler and quantizer
o a multiplicative relation between x'(nT) and x(nT)
S(xY: the delta function
ec(nT): multiplication error sequence
eci(nT): the multiplication error that rasults when the multiplier input is equal to
it

eq( nTY: quantization error sequence
€’ error of the variance of the quantization error

e;,: proportional error of the variance of the quantization error

fg: sampling frequency
KL digital filter coetficients.
N: the number of bits in a digital word (excluding the sign bit)
0: “frequency”
o(t): any continuous function
qQ the size of the basic quantization interval (volts)

ny(r): the cross-correlation between any two random variables x and v: the auto-
correlation of x when y = x

rxy('r): the cross-correlation coefTicient between any two random variables X and y:
the autocorrelation coefficient of X when y = x
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the variance of a (Gaussian) d.d.

the time interval between analog waveform samples and numbers of a
number sequence

X(t): analog waveform

x*(nT): analog waveform sampler output sequence
x (nT): ADCON output sequence: the input sequence to a digital filter
x'(nT): quantizer output sequence

y{(nT): digital filter output sequence

SPECIAL TERMS

analog-to-digital converter
(probability) distribution density

least significant bit




